高速系统信号完整性设计工具的选择策略1
时间:2010-03-10 19:29:31点击:次
对于传输速率在10G到12.5Gpbs的较高速率,FR-4板材会产生很大的损耗,要采用其它损耗特性更佳的板材。如图1所示为一种共面结构的电路板,它被用于在电路板顶层传输10Gbps到12.5Gbps的数据,所用的板材为RO4350。该板材的介质损耗很低,但是只能在顶层/底层布线,因而传输10GHz信号要用表层线。采用共面结构信号的质量比较好,EMI比较低。要采用3D 场求解工具计算线宽和间隔以确保50欧姆的线阻抗,使之与驱动电路输出阻抗匹配。可以采用Maxwell 3D场求解工具。
连接器的建模
信号以Gbps数据率传输时,通孔、连接器和相关的线头会引起信号完整性问题,连接器和通孔效应的精确建模和仿真对于预测信号质量非常重要。
Maxwell 3D场求解工具用于提取连接器的VHDM和HSD模型,连接器模型建立后,要以SpecctraQuest DML格式嵌入,用于Hspice子电路进行板级仿真。一般来说,即使成功设计出来Gbps速率的卡,要设计传输速率达到5-10Gbps的背板仍然会面临诸多挑战。Maxwell场求解工具有助于为实现这样的数据率创建连接器模型。
采用Hspice进行详细分析
a. 采用Hspice进行电源层分析
在GHz频段,电源的传递面临新的挑战,要采用精密建模技术和分析工具来获得真实的(电源)平面响应。Hspice是一个能够实现精密扫频分析的工具,并具有基于晶体管的IC模型以便对感兴趣的并发开关噪声(SSN)进行仿真。
对于向高频差分元件传递电源的电源层,可以采用传输线网孔模型来评估高频时电源/地平面的行为。例如,要分析PCB中一对2英寸×2.5英寸的电源/接地平面, 平面间隔3.5mil,要求边沿速率70ps,带宽5GHz。一般的做法是根据某个主要的差分元件的参数指标,每一个差分电源/接地平面对的目标阻抗预算为272m?,传输线网孔模型用来确定电源?地平面的频域响应。对于1Gbps以上速率,建议要分别考虑有损和无损情况以确定在模型中加入介质损耗的影响。
该模型用于进行Hspice仿真,得到的谐振频率为1.2GHz,仿真结果表明:通过在电源/接地平面考虑介质损耗问题,能够极大地降低谐振振幅,有助于电源/接地平面的频域响应以达到目标阻抗的要求。由于多数高速串行数据都是采用差分传输方式,该电源/接地平面专用于2.5Gbps差分信号的传输。理想情况下,差分元件因具有差分特性而不吸取瞬态电流。因此,实际上目标阻抗可以更高一些,通过减少不必要的PCB层数,还可以避免超指标要求进行设计。
b. 采用Hspice评估元件并进行高频分析
尽管IBIS模型广泛用于板级仿真,在新元件评估中,基于晶体管驱动器/接收器模型的分析仍然至关重要。随着IC制造商越来越多地以Hspice加密形式提供基于晶体管的模型,Hspice逐渐成为元件评估的唯一工具。这样的仿真应该包括加载/卸载封装效应、以及器件不同类型和长度的驱动传输线。为此,需要制造商合作提供正确的模型并根据实际元件的情况修改模型。确定了元件之后,就可以根据最终Hspice模型和功能指标创建和验证IBIS模型。在更高的信号速率,例如10-12.5Gbps,行为模型不再有效,对于工作在该频段的器件,试图创建IBIS模型是没有意义的。
仿真工具集成流程
根据上述研究和SI设计指南,我们成功地设计了收发速率达到12.5Gbps的电路板,该板向40Gbps器件传送2.5Gbps速率的数据。前面已经详细讨论了怎样利用CAD工具解决不同的设计问题,然而,设计工程师通常忽视的一个问题是:在高速设计过程中,面对众多的EDA工具何时选用何种工具?因此,设计过程中,应该按照下列标准的流程来集成仿真工具:
采用Hspice和SpecctraQuest开发SI模型;
采用Maxwell和SpecctraQuest开发电路板的分层策略、各层参数和布线模型;
采用Hspice进行去耦电容电源平面分析;
采用SpecctraQuest进行底层规划、版图指标确定、预布线分析和布线后验证。
为了高效地执行这个流程,硬件设计工程师和设计管理人员必须掌握SI和EMI的基础知识。
发展趋势
目前,在EDA工具领域,除了针对特殊产品的专用信号完整性设计工具之外,采用集成手段以满足高速PCB设计行业对EDA工具的迫切需求已经成为提升设计行业技术水平的一个重要发展趋势,这表现在以下几个方面:
高速设计的疆界已经由过去的通信产品扩展到移动电话、数码影像之类的消费电子产品。EDA工具供应商逐步认识到,他们所提供的工具解决方案必须速度更快,必须能够解决更复杂的设计问题,必须高度集成以解决PCB设计行业面临的全方位挑战,从而缩短复杂高速电路板设计的周期。
随着高速器件、连接器、集成电路应用的日益增多,对集成多种建模语言的PCB信号完整性设计工具存在很大需求。Mentor Graphics公司的ICX 3.0就是一种可选的方案,它在单一仿真环境下支持SPICE、IBIS和VHDL-AMS的PCB信号完整性工具,从而避免因模型种类不同、采用多种不同来源的EDA工具集带来的开发周期被拖延的问题。
随着越来越多的高速PCB采用复杂封装的IC,由于PCB和IC中包含有多重、任意形状的电源/接地层、任意数量的过孔和信号线段,噪音、电源/接地层的反弹、共振、反射,以及导线线段与电源/接地层间的耦合问题将更加严重,PCB设计不可避免地要考虑IC的封装因素,如何生成PCB和IC的频域和时域模型,以便进行系统级仿真也是业界面临的一个重要课题。在EDA工具内部集成的全波分析引擎,通过对板级电磁场的特征分析来完成板级模型的量化和处理。